Molecular mechanisms of neural crest formation.

نویسندگان

  • C LaBonne
  • M Bronner-Fraser
چکیده

The neural crest is a transient population of multipotent precursor cells named for its site of origin at the crest of the closing neural folds in vertebrate embryos. Following neural tube closure, these cells become migratory and populate diverse regions throughout the embryo where they give rise to most of the neurons and support cells of the peripheral nervous system (PNS), pigment cells, smooth muscle, craniofacial cartilage, and bone. Because of its remarkable ability to generate such diverse derivatives, the neural crest has fascinated developmental biologists for over one hundred years. A great deal has been learned about the migratory pathways neural crest cells follow and the signals that may trigger their differentiation, but until recently comparatively little was known about earlier steps in neural crest development. In the past few years progress has been made in understanding these earlier events, including how the precursors of these multipotent cells are specified in the early embryo and the mechanisms by which they become migratory. In this review, we first examine the mechanisms underlying neural crest induction, paying particular attention to a number of growth factor and transcription factor families that have been implicated in this process. We also discuss when and how the fate of neural crest precursors may diverge from those of nearby neural and epidermal populations. Finally, we review recent advances in our understanding of how neural crest cells become migratory and address the process of neural crest diversification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells.

Neural crest cells, a population of proliferative, migratory, tissue-invasive stem cells, are a defining feature of vertebrate embryos. These cells arise at the neural plate border during a time in development when precursors of the central nervous system and the epidermis are responding to the extracellular signals that will ultimately dictate their fates. Neural crest progenitors, by contrast...

متن کامل

ABSTRACT Title of Document: MOLECULAR MECHANISMS UNDERLYING CADHERIN- 6B INTERNALIZATION IN PREMIGRATORY CRANIAL NEURAL CREST CELLS DURING THEIR EPITHELIAL- TO-MESENCHYMAL TRANSITION

Title of Document: MOLECULAR MECHANISMS UNDERLYING CADHERIN6B INTERNALIZATION IN PREMIGRATORY CRANIAL NEURAL CREST CELLS DURING THEIR EPITHELIALTO-MESENCHYMAL TRANSITION Rangarajan Padmanabhan, Doctor of Philosophy, 2015 Directed by: Lisa Taneyhill, Assistant Professor, Department of Animal and Avian Sciences The generation of migratory cells from immotile precursors occurs frequently throughou...

متن کامل

Fibronectin and integrin alpha 5 play essential roles in the development of the cardiac neural crest

Cardiac neural crest (CNC) plays a requisite role during cardiovascular development and defects in the formation of CNC-derived structures underlie several common forms of human congenital birth defects. Migration of the CNC cells to their destinations as well as expansion and maintenance of these cells are important for the normal development of the cardiac outflow tract and aortic arch arteri...

متن کامل

Axud1 Integrates Wnt Signaling and Transcriptional Inputs to Drive Neural Crest Formation.

Neural crest cells are induced at the neural plate border by the combined action of transcription factors and signaling molecules. Here, we show that Axud1, a downstream effector of Wnt signaling, represents a critical missing link that integrates signaling and transcriptional cues to mediate neural crest formation. Axud1 is a transcription factor expressed in neural crest progenitors in a Wnt1...

متن کامل

FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest

Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both pluripotency and neural crest formation in Xenopus. We show that FGF signaling controls a subset o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of cell and developmental biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1999